Mi Pequeño Pony

Cambio Climático. Es un tema que ha estado en las noticias recientemente por una variedad de razones, principalmente porque lo estamos sufriendo ahora. Sabemos eso porque tenemos los registros del clima desde 800,000 años atrás (y tal vez desde [1.5 millones de años atrás]) de los núcleos de hielo. Los gases que quedaron atrapados en el hielo están hechos de la atmósfera que estaba presente cuando se formó el hielo. Los átomos que forman los gases, como oxígeno, carbono e hidrógeno, tienen valores distintos de partículas positivas y negativas (distintos isótopos) que están directamente relacionados con la temperatura del planeta en ese momento. Así sabemos que temperatura tenía el planeta y podemos trazar los datos y hacer predicciones de cómo viene le futuro (alerta de spoiler: va a hacer calor). Para más información sobre eso, miren el video al fondo de este artículo.

Este gráfico muestra los niveles de dióxido de carbono en el tiempo. Cuanto mayor sea el nivel de dióxido de carbono, más caluroso será la temperatura. De NASA. Crédito va a los datos de núcleos de hielo de Vostok/J.R. Petit et al.; el registro de dióxido de carbono de Mauna Loa de NOAA.

Esta semana se publicó un [artículo] que analiza estos isótopos del pasado. La Tierra se ha calentado en el pasado. Uno de esos tiempos, llamado el Máximo Térmico del Paleoceno-Eoceno (MTPE, 56 millones de años atrás) duró por 200,000 años y subió la temperatura de la Tierra entre 5°C y 8°C durante 10,000 años. (Nota: ya subimos [0.7°C durante 100 años, que es cerca de 10 veces más rápido] que durante los ciclos naturales que el planeta ha experimentado.)

Bueno, hay mucha información en este gráfico. Lo voy a explicar. El tiempo, en millones de años, está al fondo (eje de las x) con el hoy en día a la derecha en 0 millones de años atrás. Las abreviaturas por arriba del tiempo son para los nombres de los periodos (Pal = Paleoceno, Eo = Eoceno). Sobre la derecha, la eje de las y muestra la cantidad de un isótopo particular de oxígeno que nos indica la temperatura. La línea verde en el gráfico es la cantidad de ese isótopo durante el tiempo, y eso nos da una idea de la temperatura. Cuanto más alta esté la línea, lo más calor, y cuanto más baja esté la línea, lo más frío la temperatura. Entre el Paleoceno y el Eoceno pueden ver un máximo que indica una temperatura alta rápida. También pueden ver la tendencia hacia temperaturas más frescas que condujo a las épocas de hielo (donde dice “Rapid Glacial Cycles” = “Ciclos de Glaciares Rápidos).

Este nuevo estudio examinó un tiempo después del MTPE (aproximadamente 2 millones de años después, 53.7 millones de años atrás), llamado el Máximo Térmico Eoceno 2 (MTE2). El registro de este tiempo es relativamente completo en la Cuenca Big Horn de Wyoming (USA). Los autores analizaron la temperatura antes, durante y después del MTE2 usando los isótopos de la tierra y de los dientes de un caballo primitivo, el Arenahippus pernix, y otros especies de mamíferos. También calcularon el tamaño del cuerpo de estos animales usando el tamaño del primer molar. El tamaño del molar se corresponde bien con el tamaño del cuerpo en los mamíferos, así que podemos usar el tamaño del molar para estimar el tamaño del cuerpo cuando solamente tenemos los dientes del animal.

Un Arenahippus pernix en el Museo de Historia Natural de Suecia. De Wikipedia.

Los autores encontraron que cuando la temperatura subió, el tamaño del caballo se redujo (de 7.7 kg a 6.6 kg). Cuando la temperatura bajó después del MTE2, el tamaño aumentó (de 6.6 kg a 7.9 kg). Una de las razones de esta reducción es que es más fácil refrescarse si uno es pequeño que si uno es grande. Si el medio ambiente se está calentando, la habilidad de refrescarse más rápido es una ventaja. Además, tal vez había menos nutrientes disponibles si había sequías, así que, tal vez, los caballos no pudieron crecer hasta su tamaño máximo. La ultima razón se puede relacionar con la cantidad de lluvia. Con menos lluvia hay menos plantas y menos comida para los herbívoros. Cualquiera sea la razón o combinación de razones, lo que sabemos es que los cambios climáticos, como los que podemos ver hoy, van a afectar a los mamíferos en maneras que todavía estamos descubriendo.

Figura 3 (A y C) del artículo. Las primeras dos columnas muestran los niveles del isótopo de carbono en la tierra durante el tiempo. Los puntos más a la izquierda muestran temperaturas más altas. La columna a la derecha muestra el tamaño del molar del Arenahippus. Los puntos a la izquierda son molares más chicos y los puntos a la derecha son molares más grandes. Los molares se achican cuando hace más calor, y después se hacen más grandes cuando el ambiente se hace más fresco.

Aquí tienen un video sobre los niveles de dióxido de carbono en la atmósfera del Earth System Research Laboratory (Laboratorio de Investigaciones del Sistema de la Tierra) del National Oceanic and Atmospheric Administration (Administración Nacional del Océano y la Atmósfera, USA). Más recursos disponibles si los solicitan.

My Little Pony

Climate Change. It’s a topic that’s been in the media recently for a number of reasons, namely because we’re experiencing it now. We know that because we have climate records going back to 800,000 years (possibly [1.5 million years]) from ice cores. The gases trapped in the ice are made up of the atmosphere that was around when the ice formed. The atoms that make up the gas, like oxygen, carbon, and hydrogen, have different values of positive and negative particles (different isotopes) that relate directly to the temperature the planet was at the time. That’s how we know what temperature the planet used to be and how we can plot the data and form predictions about what the future holds (spoiler alert: it’s gonna get hot). For more on that, watch the video at the bottom.

This graph shows carbon dioxide levels over time. The higher the level of carbon dioxide, the hotter the temperature. From NASA. Credit goes to Vostok ice core data/J.R. Petit et al.; NOAA Mauna Loa CO2 record.

A [paper] was published this week that analyzed these same isotopes from the past. The Earth has gotten hotter in the past. One of these times, called the Paleocene-Eocene Thermal Maximum (PETM, 56 million years ago) lasted for 200,000 years and caused the Earth to rise 5°-8°C over 10,000 years. (Note: we’ve risen [0.7°C over 100 years, which is about 10 times faster] than the natural warming cycles the planet has experienced.)

Lots of information in this graph. Here’s the breakdown. Time, in millions of years, is on the bottom (the x-axis) with present day on the right at 0 million years ago. The abbreviations above the time are for the names of the period (Pal = Paleocene, Eo = Eocene). Along the right, the y-axis shows the amount of a particular isotope of oxygen that tells us temperature. The green line in the graph is the amount of that isotope over time, and gives us a sense of temperature. The higher the line is the hotter the temperature, and the lower the line is, the cooler the temperature. Right between the Paleocene and the Eocene, you can see the spike that indicates a sudden hot temperature. You can also see the cooling trend that lead to the ice ages (“Rapid Glacial Cycles”).

This new study examined a time after the PETM (about 2 million years later, at 53.7 million years ago), called the Eocene Thermal Maximum 2 (ETM2). The record of this time is pretty complete in the Big Horn Basin of Wyoming. The authors analyzed the temperature before, during, and after the ETM2 using the isotopes contained in the soil and in the teeth of an early horse, Arenahippus pernix, and a couple of other mammal species. They also calculated the body size of these animals using the size of the first molar. Molar size corresponds well to overall body size in mammals, so we can use the molar size to estimate body size when we only have teeth.

Arenahippus pernix at the Swedish Museum of Natural History. From Wikipedia.

The authors found that as temperature increased, the size of the horse shrank (from 7.7 kg to 6.6 kg). As temperature fell again after the ETM2, body size increased (from 6.6 kg to 7.9 kg). One of the reasons for this shrinkage is that it’s easier to cool off a smaller body than it is to cool off a larger body. If the environment is warming up, then being able to cool off faster is an advantage. Also, there may have been fewer nutrients available if droughts were happening, so the horses may not have been able to grow to their full size. The last reason could be related to how much rain was available. Less rain means less plants and less food for herbivores. Whatever the reason or combination of reasons, what we do know is that climate change, like what we’re seeing now, will affect mammals in ways we are still discovering.

Figure 3 (A and C) from the paper. The first two columns show the carbon isotope levels in the soil through time. The further the points move to the left, the hotter the climate was. The right column shows molar size in Arenahippus. Points to the left are smaller molars and points to the right are larger molars. The molars get smaller just as temperature is the hottest, and then grow again when the climate cools down.

Video on atmospheric carbon dioxide from the Earth System Research Laboratory at the National Oceanic and Atmospheric Administration. More sources can be made available on request.